Practice Questions

- Q1 What enthalpy change is a Born-Haber cycle usually used to calculate? Give the definition of this enthalpy change
- Q2 Give chemical equations for the following, including the state symbols of all the species present:

- a) $\Delta H_{at}^{\oplus} [K_{(s)}]$ b) $E_{m1} [K_{(s)}]$ c) $E_{aff} [I_{(g)}]$ d) $\Delta H_{latt}^{\oplus} [KI_{(s)}]$ b) $\Delta H_{f}^{\oplus} [MgO_{(s)}]$

Exam Questions

Q1 The enthalpy changes involved in the formation of calcium oxide are shown below.

Enthalpy of atomisation of calcium = $+177 \text{ kJ mol}^{-1}$

Second ionisation energy of calcium = $+1100 \text{ kJ mol}^{-1}$

Electron affinity of an oxygen atom = -141 kJ mol^{-1}

Lattice energy of calcium oxide = $-3401 \text{ kJ mol}^{-1}$

First ionisation energy of calcium = +590 kJ mol⁻¹

Enthalpy of atomisation of oxygen = $+249 \text{ kJ mol}^{-1}$

Electron affinity of $O^- = +790 \text{ kJ mol}^{-1}$

Calculate the enthalpy of formation for calcium oxide using the information given above.

[3 marks]

The electron affinity of the O⁻ ion is +790 kJ mol⁻¹. Explain why the electron affinity of O⁻ is positive. [2 marks]

Q2 Use the data below to calculate the lattice energy of magnesium chloride, MgCl₂.

Enthalpy of atomisation of magnesium = $+148 \text{ kJ mol}^{-1}$

First ionisation energy of magnesium = +738 kJ mol⁻¹

Second ionisation energy of magnesium = +1451 kJ mol⁻¹

Enthalpy of atomisation of chlorine = $+122 \text{ kJ mol}^{-1}$

Electron affinity of a chlorine atom = -349 kJ mol^{-1}

Enthalpy of formation of MgCl₂(s) = -641 kJ mol⁻¹